
Communicating uncertain beliefs with conditionals:
Probabilistic modeling and experimental data

Britta Grusdt (britta.grusdt@uni-osnabrueck.de)
Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany

Michael Franke (michael.franke@uni-osnabrueck.de)
Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany

Abstract
Conditionals like If A, then C can be used, among others, to
convey important knowledge about rules, dependencies and
causal relationships. Much work has been devoted to the in-
terpretation of conditional sentences, but much less is known
about when speakers choose to use a conditional over another
type of utterance in communication. To fill this gap, we con-
sider a recently proposed computational model from proba-
bilistic pragmatics, adapted for modeling the use of condition-
als in natural language, by comparing its predictions to exper-
imental production data from a behavioral experiment. In a
novel experimental approach, we manipulate relevant causal
beliefs that might influence whether utterances with condi-
tional structure are preferred over utterances without condi-
tional structure. This is a step towards a systematic, quanti-
tative investigation of the situations that do or do not elicit the
natural use of conditionals.
Keywords: conditionals; pragmatic language use; probabilis-
tic modeling; belief elicitation

Introduction
Formal accounts of natural language meaning are tradition-
ally rooted in logical analysis and therefore pay attention
specifically to sentential connectives. While natural lan-
guage conjunctions (Blakemore & Carston, 2005), disjunc-
tions (Simons, 2001) and negation (Horn, 1989) all feature
their own respective subtleties, possibly deviating from a
classical logical analysis, natural language conditionals are
among the most elusive constructs to provide an account
of meaning for. Given their central role in the formulation
of rules and regularities, conditionals have been studied ex-
tensively in philosophy and logic (Adams, 1975; Bennett,
2003), psychology of reasoning (Wason, 1968; Evans, 1993),
semantics (Stalnaker, 1968; Lewis, 1973) and pragmatics
(Veltman, 1986).

The majority of existent theories on the pragmatics of con-
ditionals concern their interpretation, a prominent one being
Mental Model Theory (Johnson-Laird & Byrne, 2002). Other
pragmatic accounts target particular phenomena observed in
the communication with conditionals, such as the interpreta-
tion of ‘if ’ as ‘only if ’ (e.g. Geis and Zwicky (1971); Horn
(2000)). Yet, on the production side, pragmatic accounts
have remained rather vague about the reasons why speakers
use a conditional sentence rather than an utterance without
conditional structure. Grice (1989), for instance, argued that
the utterance of a conditional commits a speaker to, what
he called an Indirectness condition, a relation between an-
tecedent and consequent that was yet not specified further

(for recent semantic accounts, see Douven (2017); Douven,
Elqayam, Singmann, and van Wijnbergen-Huitink (2018)).

A step towards a formal, predictive account for the choice
of a conditional, as opposed to an utterance of a non-
conditional sentence, has been advanced by Grusdt, Lassiter,
and Franke (2021) who spell out a probabilistic model of ut-
terance choice in the tradition of the Rational Speech Act
(RSA) framework (Franke & Jäger, 2016; Goodman & Frank,
2016). It predicts that the speaker’s utterance choice, and con-
sequently the pragmatic listener’s interpretation, depends on
probabilistic beliefs about the modeled events as well as on
likely causal models of the world. The model successfully
captures theoretically interesting pragmatic phenomena ob-
served in the communication with conditionals, like the lis-
tener’s inferences to the speaker’s uncertainty about the an-
tecedent and the consequent or the tendency to infer ‘If not A,
then not C’ from the speaker’s utterance of a conditional ‘If
A, then C’ (a phenomenon known as conditional perfection).

Here, we aim to test the RSA-model of conditionals of
Grusdt et al. (2021) for its ability to predict empirical data
on the speaker’s choice of conditional vs. non-conditional ut-
terances. The main challenge in applying this model to em-
pirical data is to find a plausible setup for the set of meaning
distinctions relevant for the communication with conditionals
in the context of our concrete experiment, as well as a rea-
sonable prior distribution for any assumed state space. Prima
facie, there are at least two conceivable types of approaches:
either the relevant meaning distinctions and priors that guide
speaker’s choices of conditionals according to the assumed
model are generic and relatively independent of the concrete
experimental task, or they are adapted to the specific statis-
tics of the experimental environment. We therefore compare
a model with abstract state priors, which assumes that certain
causal relations are associated with certain kinds of proba-
bilistic beliefs, with another version of the model, which uses
situation-specific priors and thereby assumes participants to
have acquired particular beliefs for different kinds of visual
scenes shown during training.

To test these models, we collected data from a novel behav-
ioral experiment designed to elicit human language users’ de-
scriptions of visual scenes in which utterances of conditionals
might or might not be communicatively useful, depending on
the relation between the represented events and their prob-
ability to occur. The experimental setup differs from most



behavioral experiments investigating the meaning of condi-
tionals (e.g. truth table tasks, acceptance ratings etc.) in that
participants have the choice to actively create a variety of dif-
ferent conditional or non-conditional utterances. Participants
describe visual scenes by creating a sentence from a set of
available chunks (see Fig. 1).The visual scenes are created
in such a way as to be able to systematically induce a wide
range of uncertain belief states in human participants, so that,
according to the model of Grusdt et al. (2021) there may be
more or less of an incentive to use a conditional as a de-
scription. Concretely, we use scenes showing arrangements
of objects which are more or less likely to fall, possibly as
the result of another object falling (see Fig. 1 and 3), thus
tapping into participants’ intuitive grasp of physics to induce
uncertain belief states. Other aspects of language use have
been investigated by means of behavioral experiments tak-
ing advantage of peoples’ intuitive understanding of physics,
e.g. by Beller, Bennett, and Gerstenberg (2020), who used an
RSA-model, as we do here, to investigate the pragmatics of
causal language, however, not including conditionals.

Experiment
Participants
We collected data from 100 English native speak-
ers via the online crowd-sourcing platform Prolific
(www.prolific.co). Only participants who had not
participated in any of our pilot studies and had an average
approval rate of at least 50% were admitted.

Materials
The experiment consisted of 15 animations in the training
phase and 13 static pictures in the test phase. The stimuli
from the test phase are shown in Fig. 3.

Situations differed systematically along three dimensions:
‘relation’, ‘prior-antecedent’ and ‘prior-consequent’, speci-
fied in Table 1. For presentation purposes, the blue block
is always shown as the antecedent- and the green block as the
consequent-block here, during the experiment colors were,

Table 1: Conditions for test stimuli. Letter a denotes proposi-
tion ‘the antecedent-block falls’, c stands for ‘the consequent-
block falls‘. 0,L,0.5,H respectively refer to an impossible
event, an event that has low probability, that is expected to
occur at chance level, or with high probability.

relation prior-antecedent prior-consequent

if1 [L,0.5,H]
P(c | a) = H
P(c | ¬a) = 0

if2 [L,0.5,H]
P(c | a) = H
P(c | ¬a) = L

independent [L,0.5,H]
P(c) = P(c | a) =
P(c | ¬a), [L,H]

Figure 1: Screenshot of a UC task trial where relation is
if2, prior-antecedent (green block) high and prior-consequent
(blue block) low. Participants chose a description of the pre-
sented scene by selecting chunks from a pre-given menu in
sequence.

however, randomly assigned to blocks. The prior dimensions
specify how likely it is for the blocks to fall initially, without
considering the respectively other block. The relation dimen-
sion specifies whether there is, intuitively, a causal relation
between the two block’s falling. In situations labeled as inde-
pendent, stimuli were created such that there is likely no in-
teraction between the two blocks, whereas in situations with
if -labels, there most likely is. The difference between if1-
and if2-trials is that in the former there is only one conceiv-
able possibility for the consequent-block to fall, namely by
the rolling ball, whereas in the latter it is also possible that it
falls due to its position on the edge of the third block.

The 13 test situations were chosen to include for each rela-
tion one trial where the prior of the antecedent-block to fall is
low, one where it is high and two where it is at chance level.
An additional independent-situation was included where one
block is likely to fall while the other is unlikely to fall.

The scenes shown in the test phase are slightly different
instantiations of the same kind of scenes as used in the ani-
mations of the training phase. All stimuli were created with
‘matter.js’, a rigid body physics engine.1 The static pic-
tures in the test phase are 820x450 pixel screenshots of an-
imations frozen at their initial state. The code for the ex-
periment, all stimuli and the analysis can be found here:
https://tinyurl.com/pknmm9z9.

Procedure
Training The purpose of the training phase was, on the one
hand, to familiarize participants with the stimuli and make
them acquire a good sense of the physical properties of the
blocks in the simulated world. On the other hand, participants
should also become familiar with the use of the sliders so that
they would be able to indicate their beliefs appropriately.

In the beginning of the training phase, three comprehension
questions were used to ensure that participants understood the

1https://brm.io/matter-js/



instructions, in particular the meaning of the four icons that
represent the four possible outcomes of a trial (each of the two
blocks falls/does not fall). In the ten subsequent preparatory
trials (slider-choice trials), participants were shown pictures
of slider ratings and were asked whether a given statement
was an adequate description of the beliefs represented by the
slider ratings.

Then the actual training phase started in which participants
were shown fifteen animated situations (as described above).
Before they were able to run the animations, they had to in-
dicate how likely they believed the green and the blue block
were to fall. In order to measure participant’s beliefs over the
two joint truth values of propositions ‘the blue/green block
falls’, we made them adjust four sliders, one for each of the
four possible outcomes (only green falls, only blue falls, both
fall, neither falls). When participants had estimated the prob-
ability of all four events, their ratings were automatically ad-
justed to sum up to one and they were shown the result of
this normalization. Participants then had the chance to up-
date their slider ratings for as long as they liked. After each
stage of selection, the current normalized probabilities were
shown numerically and, as further visual help, as a blue and
a green pie chart, representing the marginal probability as-
signed to each of the two blocks to fall. When participants
were satisfied with their slider adjustments, they would click
on a “RUN” button which started the animation.

Before participants could move on to the next trial, they
were given feedback about which event actually occurred and
how much probability they had assigned to this event. In-
structions made clear that assigning a low probability to the
eventual outcome might still have been a reasonable choice
due to chance, and participants were encouraged to continue
indicating their genuine beliefs and uncertainties. All train-
ing trials were pseudo-randomized such that the number of
blocks that fall per trial was approximately evenly distributed
across all trials.

Testing In the test phase, each participant saw each of the
13 test situations once in pseudo-randomized order, such that
high/low and uncertain prior conditions were approximately
evenly distributed and no subsequent trials had identical rela-
tion conditions.2 For each situation, participants worked on
two tasks in direct sequence.

The first task, called the PE (prior elicitation) task, elicited
belief judgements about likely outcomes of each physical ar-
rangement. Unlike before, during the training phase, partic-
ipants were now shown static pictures instead of animations
and did not get any feedback on their ratings.

The second task, called the UC (utterance choice) task,
reused the same pictures shown previously in the PE task.
Participants were asked to “describe to a critical friend as ad-
equately as possible what happens with the blue and the green
block in the picture”. Participants were instructed not to say
what they were not sufficiently convinced of (as the friend is

2After each second trial, an attention check asked for the color
of a block in a shown picture.

Figure 2: Densities of participants’ estimations from the PE
task for utterances created in the corresponding UC task in
situations where the prior condition for the antecedent-block
is uncertain.

assumed to be critical). The choice of descriptions that par-
ticipants could possibly create was limited: they were shown
a set of buttons with words that had to be clicked on in or-
der to concatenate them to form sentences as shown in Fig. 1.
The created utterances were shown on the screen and partic-
ipants had the possibility to make corrections and optionally,
they could freely type in a sentence if they did not consider
any of the given possibilities to be adequate (not considered
here). The experiment only allowed concatenations of sen-
tence chunks that formed grammatical sentences.

The available utterances can be categorized into four differ-
ent types. Conditionals form the category that we are mainly
interested in. Further, participants could create conjunctions
as they allow to explicitly mention two events with an ut-
terance other than a conditional, and simple assertions, like
‘the blue block falls’ or ‘the green block does not fall’, de-
scribing possible outcomes for the green and blue block sep-
arately. Each of the four simple assertions could be combined
with ‘might’ such that participants had another possibility to
express uncertainty other than by using conditionals.3 This
yields a total of 20 sentences with distinct meaning, some re-
alizable in multiple ways, e.g. ‘the blue block falls and the
green block falls’ denote the same distinct meaning as ‘both
blocks fall’.

Results
Data Cleaning The entire data set of a participant was ex-
cluded if (i) they failed any of the attention check questions
in the test phase (5 removed) or (ii) got more than half of
the ten slider-choice trials in the training phase wrong (1 re-
moved), and if (iii) the average squared differences between
a participant’s ratings in the PE task and the mean response of
all other participants across all test situations was larger than
0.5 (3 removed). Three participants’ data was excluded since
their comments indicated that they had technical problems or
difficulties with the task. We excluded six trials where partic-

3Note that ‘might’ could not be used within conjunctions,
e.g. ‘blue might fall, but green does not fall’ could not be created.



ipants created an utterance in the UC task that was assigned a
probability of 0 in the PE task by the same person.

Behavioral Data All stimuli were shown twice in direct se-
quence, first in the PE task in which participants were asked
to indicate their beliefs regarding the (falling) behavior of the
two blocks and consequently in the UC task, in which partici-
pants were asked to create a sentence that described the visual
scene. To get a sense of the relation between participants’
prior ratings for a given scene and their choice of descrip-
tion for that same scene, Fig. 2 shows data from both tasks,
namely for the six scenes where the prior condition for the
antecedent-block to fall is uncertain. Concretely, it shows the
probabilities corresponding, according to the semantics dis-
cussed below, to participants’ respectively chosen utterance
for scene j (grouped by utterance type), as estimated in the
PE task for scene j. According to this, participants often used
conjunctions or simple assertions even though they had in-
dicated with ratings around 0.5, and even lower, to be quite
uncertain about the respective outcome.4

To provide more detail, Fig. 3 shows the stimuli of all test
situations (A), with the results from the PE task (B) and the
UC task, with corresponding model predictions (C). As the
main purpose of the experiment was to test the predictions
of a computational model, further behavioral results will be
discussed along with model predictions later on.

Computational Model
The computational model that we aim to test is a vanilla
RSA-model (Franke & Jäger, 2016; Goodman & Frank,
2016) adapted to be applicable to communication of stochas-
tic/causal dependencies. RSA-models are probabilistic mod-
els that formalize Gricean pragmatic reasoning: the speaker’s
utterance choice is predicted to depend on the utility of an ut-
terance for communicating a state, in relation to the utility of
plausible alternative utterances available to the speaker. As
the relevant data we consider is for the choice of a suitable
description, we focus on the speaker part of vanilla RSA:

PS(u | s) ∝ exp(α ·U(u;s)) (1)

The free parameter α tweaks the extent of ‘rationality’ of the
speaker; larger values of α correspond to stronger pragmatic
inferences, i.e. the larger α, the more the speaker’s predicted
distribution will be peaked on the utterance with the largest
utility (we set α= 3). The utility of an utterance u for a state s,
U(u;s), corresponds to its degree of informativeness, defined
in terms of the literal meaning of u, and is possibly attenuated
by utterance costs (here set to 0). Whether an utterance u is
literally true for a given state s, is defined by the denotation
function [[u]](s) which returns 1 if u is true/assertable in s and

4A reason for this bias might be that participants were not able
to create utterances that are stronger than assertions with ‘might’,
but less strong than simple assertions or conjunctions (e.g. ‘the blue
block probably falls’), and so participants might have considered an
assertion φ like ‘it will be that φ’ which does not require certainty.

0 otherwise (to be specified below).

U(u;s) = log Plit(s | u)− cost(u) (2)
Plit(s | u) ∝ [[u]](s) ·Pprior(s) (3)

Thus, the larger the utility of an utterance is, the easier it
becomes for a literal interpreter (Eq. (3)) to distinguish the
speaker’s intended state from other states and so, the more
likely the speaker is to choose the respective utterance as de-
scription of the given state.

It remains to specify the set of alternative utterances, their
literal meaning and the definition of states. Following Grusdt
et al. (2021), a state is defined as a probability table over two
binary variables, namely whether or not the green, respec-
tively the blue block, will fall in a given situation. That is,
a state represents (probabilistic) beliefs about the four possi-
ble combinations of outcomes, as judged in the PE task. The
shape of the probability tables is defined by a latent variable,
which we will explain in more detail in the next section, in
context of the the prior probability over states, Pprior(s).

Following the experimental setup, the speaker model in-
cludes all 20 utterances which could be formed without using
the free typing option in the UC task. There are four differ-
ent types of utterances: conditionals, conjunctions and simple
assertions, where the latter can be combined with ‘might’.
Utterances are defined to be literally true or assertable with
respect to a given state s, when the corresponding probability
derived from the probability table of s is larger than a thresh-
old θ. The conjunction, ‘both blocks fall’, for instance, cor-
responds to the probability Ps(B∧G) for state s. For simple
assertions, with and without ‘might’, we consider the relevant
marginal probabilities given by s, and for conditionals the rel-
evant conditional probabilities. The literal meaning threshold
θ is set to 0.7 for all utterance types except for those modal-
ized with ‘might’, which are considered true when θ is larger
than 0.25 (c.f. Herbstritt & Franke, 2019).5

Model Fitting
To derive model predictions for the data at hand, we still
need to fix the state space and the state prior Pprior(s). There
are at least two prima facie plausible specifications. For
one, situation-specific state priors assume that speakers will
choose a description based on a (hypothetical) listener’s in-
terpretation which takes the concrete, experiment-induced
statistics of the environment into account, i.e., the situations
Ci that occur, and how likely each state s is for a given, con-
crete situation Pprior(s | Ci). The empirical data from the PE
task can be used to specify situation-specific state priors:

PSIT
prior(s) =

1
13

13

∑
i=1

P(s |Ci)

P(s |Ci) = Dirichlet(s | α̂i) , where

α̂i = argmax
α

∏
j

Dirichlet(DPE
i j | α)

50.7 is arguably a rather low value, the empirical average thresh-
old is at 0.662, however, even smaller.



Figure 3: Results for all 13 test situations where each column shows the data from one situation. A. Stimuli with the relative
frequency of the three utterances participants created most often in the UC task represented by colored bars above. ‘Other’
comprises all remaining utterances. B. Slider rating densities overlayed by observations from 6 randomly chosen participants.
C. Proportions of utterance types produced in the UC task, plotted with the respective predictions from both models (errorbars
are bootstrapped 95% confidence intervals).

A. Dependent B. Independent

φ ψ B G

P(ψ | φ)∼ beta(10,1) P(B),P(G)∼ beta(1,1)
P(ψ | ¬φ)∼ beta(1,10) P(B,G)∼
ψ,φ ∈ {B,G} N m

l (P(B) ·P(G),5 ·10−3)

Figure 4: Noisy-or model for two dependent (A) and inde-
pendent (B) variables, where B denotes ‘the blue block falls’
and G ‘the green block falls’. m, l refer to the upper and lower
bound of P(B∧G), constrained by the marginal probabilities,
P(B),P(G).

Situation-specific priors are calculated by a (theory-free)
Dirichlet model. We compute the ML-estimate for a Dirichlet
distribution to best predict the data from the PE task for each
situation Ci.6

Alternatively, abstract state priors consider a space of
weighted interpretation options for a generic case of commu-
nication about two binary variables which may or may not
stand in a causal relationship. Following Grusdt et al. (2021),
we consider five different causal nets, one where the two rel-
evant binary variables are independent, and one for each of
the four possible causal relations (positive/negative influence
in each direction). Each causal net cni is associated with a
stereotypical noisy-or situation (Cheng, 1997) that defines a
conditional state prior Pprior(s | cni), as specified in Fig. 4.
Here, alternative causes are only implicitly taken into account
insofar as the probability of the effect is larger than zero in the

6The family of fitted Dirichlet distributions seems to explain the
aggregate data well enough (p≈ 0.78 based on MC-simulations with
log likelihood as test statistic), even though there are four situa-
tions where the respective Dirichlet distributions did not fit well:
p ∈ (0.001,0.002,0.005,0.007), for all others p >= 0.09.

absence of the single cause. This parametrization is arguably
a natural choice to make as several empirical and theoreti-
cal studies have shown that people tend to neglect alterna-
tive causes (e.g. Krynski and Tenenbaum (2007); Fernbach
and Rehder (2013)). The probability tables associated with
the independent causal net are generated by adding Gaussian
noise to tables sampled for two probabilistically independent
variables, to allow some deviation from the exact definition
of independence. The overall abstract state priors are then:

PABS
prior(s) =

5

∑
i=1

P(s | cni) ·P(cni)

where the marginal probability of the independent causal net
is 0.5 and of any dependent causal net respectively 0.125.

The predictions of the vanilla RSA model about likely ut-
terance choices in the UC task for a given situation Ci are ob-
tained by averaging model predictions based on the assump-
tions that speakers ground their beliefs about s in the state pri-
ors (abstract or situation-specific) but also tailor them to the
specific situation Ci which is to be communicated. A compu-
tationally efficient realization of this idea is to condition the
state priors Pprior(s) on the set DPE

i of empirically observed
belief ratings for situation i, so that:

Prediction(u |Ci) = ∑
s∈DPE

i

Pprior(s | DPE
i ) PS(u | s) .

Results
According to the theoretical predictions of the model from
Grusdt et al. (2021), speakers’ utterance choices should de-
pend on the prior probabilities of the modeled events and, im-
plicitly, on the relation among them. That is, in terms of our
experiment, participants’ utterance choices should be influ-
enced by the prior and relation of the the stimuli which were



Figure 5: Overall correlation between model predictions (left:
abstract state priors, right: situation-specific priors) and em-
pirical observations, for each situation and utterance. For bet-
ter readability, color code is with respect to utterance types,
not single utterances.

designed to elicit different belief states. In particular, this
model, i.e., the model using abstract state priors, predicts that
(H1) conditionals are produced more frequently in dependent
conditions if1 or if2 than in the independent conditions. It also
predicts that (H2) conditionals are more likely when the prior
probability of the antecedent-block is uncertain, because oth-
erwise the model predicts a higher probability of a stronger
utterance, i.e., a conjunction or a simple assertion.

To test these predictions, we ran a logistic regression model
using the R-package brms (Bürkner, 2018) with varying in-
tercepts and slopes per participant to predict participants’
choice of conditional vs. non-conditional utterances based on
the relation (independent vs. dependent) and the prior of the
antecedent-block to fall (uncertain vs. confident, the latter ag-
gregates high and low). We find strong evidence for both hy-
potheses formulated above, namely (re H1) a credible main
effect of dependence (P(βrelind < 0) = 1, mean≈−5.6, CI=[-
10.03,-2.76]) and (re H2) a credible main effect of confidence
(P(βblueunc > 0) = 0.99, mean ≈ 0.84, CI=[0.24, 1.38]).

In Fig. 3, the first shown stimulus of each relation-
condition (columns 1, 5,9) show data of situations where both
blocks have a high probability to fall. As expected, partici-
pants choose conjunctions in all three situations, conditionals
are yet only observed in the dependent situations, where they
are among participants’ three most likely chosen utterances.
The predictions from the model with abstract state priors di-
verge from this observed data, particularly in the indepen-
dent situations, where conditionals are predicted to be cho-
sen with a very high probability. Contrary to that, the model
with situation-specific priors hardly predicts conditionals at
all, but largely overestimates the use of simple assertions in-
stead. Conjunctions are underestimated throughout by both
models. One reason for this underestimation can be found
considering participants’ slider ratings that model predictions
are based on: the four joint events are only rarely assigned
values larger than the literal meaning threshold θ = 0.7, yet

participants tend to use conjunctions. That is, in these cases,
the models fall back on predicting simple assertions, utter-
ances with ‘might’ and conditionals.

Fig. 5 shows the correlation between model predictions and
observed proportions for utterance choices across stimuli. On
average, the abstract state prior model moderately correlates
with participants’ observed production behavior (R=0.77),
whereas under the assumption that the speaker draws on
situation-specific priors, the correlation is worse (R=0.44).

The difference between model fits of the two models sug-
gests that the structure in the state space induced by the ab-
stract state prior captures something relevant that the state
space of the situation-specific prior model does not account
for. In particular, in case of the abstract state prior, the infor-
mativeness of utterances is clearly structured: conjunctions
are assertable only in few states (highly informative), simple
assertions in a few more, while conditionals are assertable
much more often (less informative), surpassed by utterances
with ‘might’, which are the least informative. This structure is
not induced to the same extent by the situation-specific prior.

Discussion & Conclusion
While a lot of work on the meaning and use of condition-
als exists, comparatively little attention has been paid to sys-
tematic accounts of predicting whether and when human lan-
guage users would actually use a conditional, rather than a
non-conditional utterance, and, if they do, exactly which con-
ditional sentence they prefer. This work has made a first
step towards filling this gap by setting up an experiment
suitable for manipulating participants’ uncertain beliefs and
probing their preferences for different conditional and non-
conditional utterances. We tested two instantiations of an
RSA speaker model to predict the empirically observed utter-
ance choices, based on empirically measured subjective be-
liefs induced by various situations. Overall, it seems that with
abstract state priors, as proposed by Grusdt et al. (2021), the
resulting production probabilities are able to explain general
utterance choice preferences.

These results are promising and pave the way for a future,
more thorough investigation of theory-driven models predict-
ing human use of conditionals. For one, the presented com-
parison between model predictions and empirical data indi-
cated its ability to capture some of the observed production
data, without fine-tuning its free parameters (rationality pa-
rameter α, utterance cost). Given that we observed the ab-
stract state prior model to overestimate the use of condition-
als and to underestimate the choice of conjunctions, assum-
ing higher costs for conditionals might substantially improve
model fit.

Other reasons are conceivable that might explain the
model’s observed overconfidence in conditionals, in partic-
ular in independent situations, where they are least expected.
As these are situations where participants hardly ever pro-
duced conditionals, they seem to have grasped the intended
difference in the causal relations in the different stimuli.
However, it might be possible that nevertheless they produced



probability tables in the PE task that are far from being proba-
bilistically independent. If these probability tables, on which
the predictions of the model are based, were more typical for
other causal relationships than independence, this would jus-
tify the large predicted probability for conditionals. For prob-
ability tables that are stereotypical for the independent causal
net, in the sense of the assumed abstract prior, the model
should not predict conditionals to the observed extent.

It is also possible that the speakers’ utterance choices
do not only depend on their probabilistic beliefs but also
take into account the underlying causal relation.7 Here, the
speaker is modeled to simply communicate her probabilistic
beliefs without reference to the underlying causal relation, as
the literal meaning that defines the utility of utterances, only
depends on the probabilities given by a state s but not on its
associated causal net. The speaker in the presented model
could be extended to a speaker who does take this aspect into
account when communicating her beliefs.

We chose a population-level modeling approach here. Al-
ternatively, model predictions for datum DUC

i j could be derived
from the associated probability table that individual j gave,
i.e., state s = DPE

i j . However, this approach assumes that each
participant will have the exact same mental picture of the situ-
ation each time it is presented — which may be dubious even
for a presentation of the same stimulus in direct succession of
different tasks. Therefore future extensions with hierarchical
modeling of individual-level beliefs appear reasonable.
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